2007, Volume 18

D. Dai, M.-H. Whangbo, J. Köhler, C. Hoch, and A. Villesuzanne: Electronic Structure Analysis of the Difference between Cs_2AgF_4 and Rb_2MnF_4 in Their Magnetic Properties and Single-Crystal Structure Determination of Rb_2MnF_4 .

Please note the following correction to this article (*Chem. Mater.* **2006**, *18*, 3281).

This paper (Chem. Mater. 2006, 18, 3281) examined why the two magnetic insulators Cs₂AgF₄ and Rb₂MnF₄ differ in their magnetic properties, namely, why the intralayer spin exchange is ferromagnetic in Cs₂AgF₄ but antiferromagnetic in Rb_2MnF_4 . In this study, the ferromagnetism in Cs_2AgF_4 was found to arise from the spin polarization of the $d_{x^2-y^2}$ bands, which is induced by the $d_{z^2}-p-d_{x^2-y^2}$ orbital interactions of the Ag-F-Ag bridges in the AgF₂ layers of Cs₂AgF₄. The presence of such interactions implies that substantial covalent bonding exists in the Ag-F bonds. In this context, the work missed citing the papers by Grochala and Hoffmann¹ and by Grochala et al.,² which discussed the existence of covalent bonding in the Ag-F bonds of numerous silver fluoride compounds, including Cs₂AgF₄. They described the electronic structure of Cs₂AgF₄ on the basis of non-spin-polarized DFT calculations, hence predicting that Cs₂AgF₄ is a metal. We thank Professor R. Hoffmann for informing us of the relevance of these two papers to our work.

CM071200D

10.1021/cm071200d Published on Web 05/19/2007

Grochala, W.; Hoffmann, R. Angew. Chem., Int. Ed. 2001, 40, 2742.
Grochala, W.; Egdell, R. G.; Edwards, P. P.; Mazej, Z.; Žemva, B. ChemPhysChem. 2003, 4, 997.